Provincial Stroke Rounds

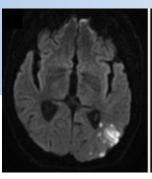
Wednesday October 1st, 2025

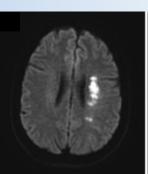
Evaluation

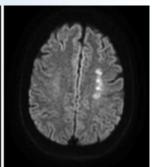
For the **Provincial Stroke Rounds Planning Committee**:

- To plan future programs
- For quality assurance and improvement
- For You: Reflecting on what you've learned and how you plan to apply it can help you enact change as you return to your professional duties
- For Speakers: The responses help understand participant learning needs, teaching outcomes and opportunities for improvement.

https://forms.office.com/r/qDuedTfj3j


Please take 2 minutes to fill the evaluation form out. Thank you!





Challenges in hemodynamic stroke: a multidisciplinary approach to chronic steno-occlusive disease

Joanna Schaafsma, MD PhD Vascular Neurologist, Assoc. Prof. University Health Network University of Toronto

Disclosures

I have no relationships with for-profit or not-for-profit organizations for this program

Objectives

- 1. Recognize the symptoms and signs of hemodynamic stroke
- 2. Understand existing imaging techniques for assessing chronic steno-occlusive arterial disease and cerebral hemodynamic status

3. Describe non-invasive strategies to prevent cerebral hypoperfusion

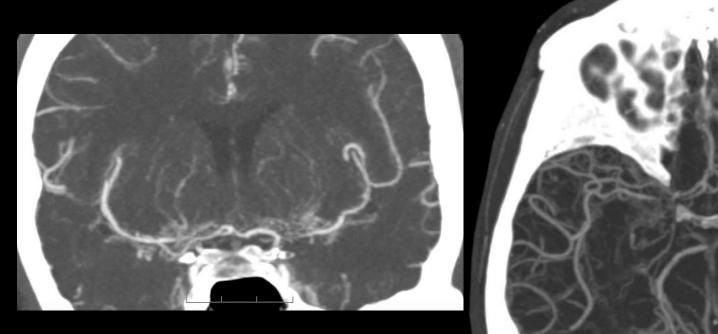
Outline

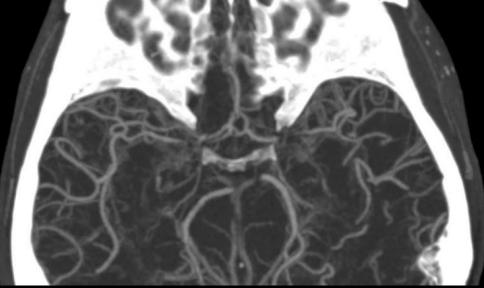
Clinical manifestations: how to recognize hemodynamic symptoms

Diagnostic work up: how to confirm hemodynamic compromise

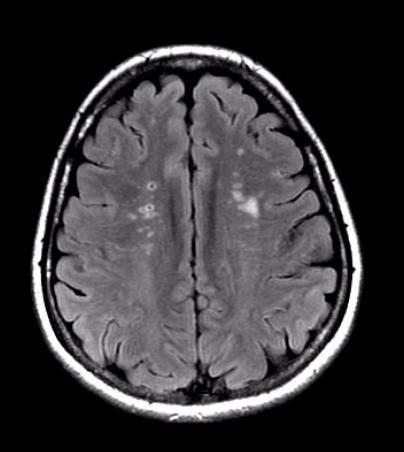
Treatment options & decision-making

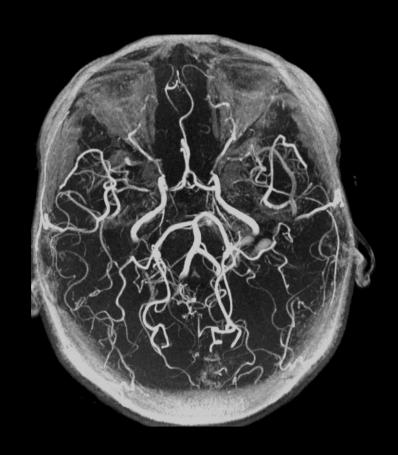
Thirty-three-year-old woman




- Episodic right arm weakness and shaking
- Trigger: feeding a child, heavy menses (endometriosis)
- Migraine-like L-sided headaches
- From the Philippines, twin sister with a history of ICH
- Baseline blood pressure 120/70 mm Hg
- EEG unremarkable

CTA

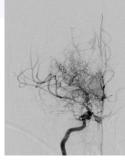




Distal ICA, M1, A1 stenosis with collateral network

MRI/MRA

Neuropsychological assessment



- Bradyphrenia
- Language impairment

Diagnosis: Moyamoya disease

Moyamoya disease

- Rare: 0.005–0.009/10⁴ non-Asian, vs 0.9-2.3/10⁴ Asian
- Female predominant: 1.8:1
- Progressive distal ICA/M1/A1 (PCA) occlusion + frail collateral network
- Moyamoya disease vs syndrome
 - Down, Sickle Cell Disease, NF1, radiation-induced MMA
- Children: progressive cognitive impairment, ischemic events
- Adults: ischemic and hemorrhagic events

Chronic occlusive cerebrovascular disease

Other causes than Moyamoya arteriopathy

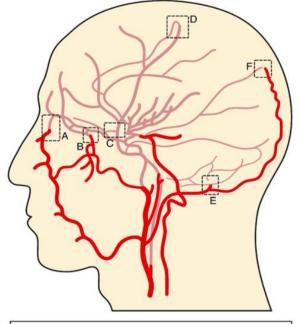
- Atherosclerosis
- Unhealed dissections
- Unhealed vasculitis
- Radiation-induced arteriopathy without MMA

– ...

Stroke burden: (recurrent) stroke risk Networks

Moyamoya disease	Adults	~10% per year (reports up to 80% over 5 years) 40% post ICH
	Children	3-12% per year
ICA occlusion		14% in the first year
Vertebrobasilar steno-occlusive disease		12% in the first month
		10-15% annually; 26% over 4 years

Gulli Stroke 2013; Li Lancet Neurol 2015; Tanaka J Stroke Cerebrovasc Dis 2022; Markus Stroke 2008; Kang Stroke 2019


Collaterome

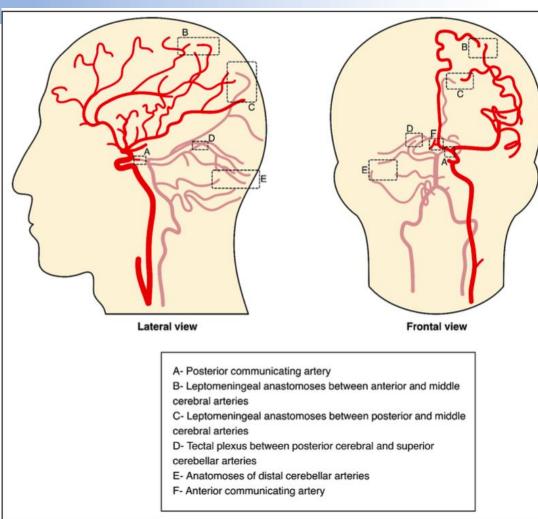
Anatomical classification:

 Collaterals between extracranial -> intracranial arteries

Facial artery, IMAX, ILT, MHT, MMA, occipital artery

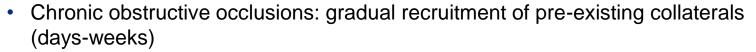
- A- Anastomoses from facial artery
- B- Anastomoses from maxillary artery
- C- Middle meningeal arteries to the opthalmic artery
- D- Dural arteriolar anastomoses from the middle meningeal artery
- E- Occipital artery through the mastoid foramen
- F- Occipital artery through the parietal foramen

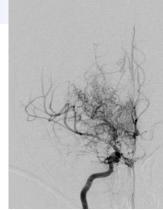
Patel, Liebeskind - Translational Stroke Research 2023


Fig. 1 Extracranial arterial collateral circulation

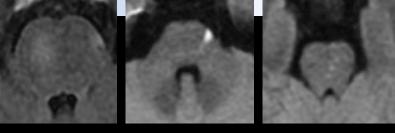
Collaterome

Anatomical classification:


- 2. Collaterals between intracranial arteries:
- -ACOM/PCOM
- -Pial or leptomeningeal collaterals (retrograde)
- -End-to-end anastomoses of distal cerebellar arteries

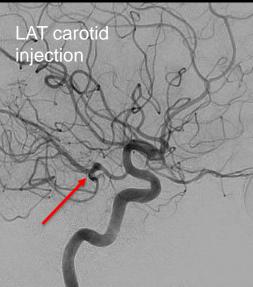

Collaterome

- The ability to recruit pre-existing collaterals is dependent on:
 - Anatomy
 - Timing:
 - Acute occlusions: instant recruitment of pre-existing collaterals
 - 'Good quality', non-tortuous


- They become tortuous with remodelling of luminal diameter
- Due to aging, vascular endothelial dysfunction, cerebrovascular risk factors: fewer and smaller collaterals
- Potential additional process:
 - Angiogenesis (Neovascularization): collateral network
 - Functional collaterals?
 - Frail

Importance of collaterals

- 37F
- Severe head/neckpain while cycling
- Acute transient tetraplegia, GCS15



MR FLAIR

MR DWI pons t=0

Hemodynamic Stroke

- Ischemic stroke caused by hypoperfusion: supply does not meet demand
 - Decreased supply:
 - Steno-occlusive disease
 - +/- hypotension, anemia
 - Increased demand:
 - Exercise
- Impaired washout of emboli

Clinical Picture: Supply < demand Toronto Stroke Networks

History

- Fluctuating stereotyped symptoms
- Limb shaking
 - <5[']
 - whole limb
 - paresis during/after (80%)
- Monocular symptoms triggered by bright light: retinal claudication
- Episodic non-focal symptoms (dizzy, unsteady, brainfog)
 - strongest predictor is focal + non focal symptoms
- Hemodynamic trigger to symptoms:
 - rising, exercise, new or ↑ antihypertensives, blood loss (menses)

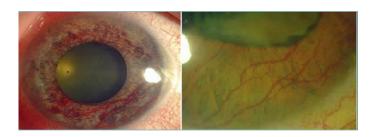
Clinical Picture: Supply < demand Toronto Stroke Networks

History: Headache

- Up to 72% in MMA^{1,2}
- Migraine mimic
- Children and adults
- Disabling: VAS 5, Sick leave: 60%
- Partially reversible after EC-IC bypass surgery:
 - Headache improvement in 68% of 59 patients
 - Related to hemodynamic status on BOLD CVR (OR 5.4; 95%CI: 1.2-23.5)
 - VAS: 5 -> 2.5 (p 0.002)
 - Analgesic use: 84% -> 40% (p 0.007)
 - Sick leave reduction: 60% -> 16% (OR 1.4; 95%CI: 1.6-121.4)

Chronic Hypoperfusion

Cognitive changes

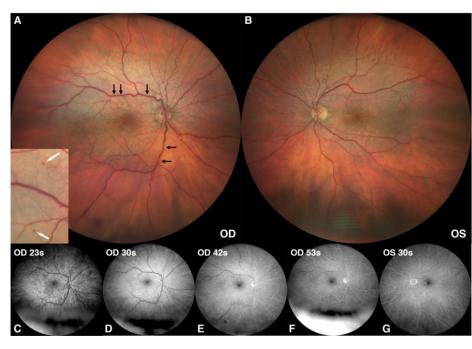

- 50% of patients with symptomatic ICAO¹
- Improvement of cortical thinning after EC-IC bypass²
- RECON-trial:
 - Symptomatic ICAO + increased oxygen extraction fraction on PET
 - No cognitive change after EC-IC bypass surgery compared to MM³
 - Cognitive improvement related to hemodynamic state on PET
- Awaiting CREST-H results (2027)⁴
 - Asymptomatic carotid stenosis and hemodynamic impairment on MR perfusion
 - A Cognition after medical management vs revascularization

Clinical Picture:

Physical exam

- Hemodynamic challenge
- Blood pressure: test for orthostatic hypotension
- Rubeosis iridis:
 - iris neovascularization
 - Associated with ocular ischemic syndrome

Oller et al JVascSurg 2012


Ocular Ischemic Syndrome

30% of ICAO
Usually gradual vision loss over weeks

75F monocular vision loss + dull pain OD:

- -Dilated inner retinal vasculature (A:black ↓)
- -Peripheral dot-blot hemorrhages (white ↓)
- -Delayed filling retinal arteries & veins (C-F)
- -Normal transit in OS (G)
- -> CTA: >90% stenosis ipsilateral ICA

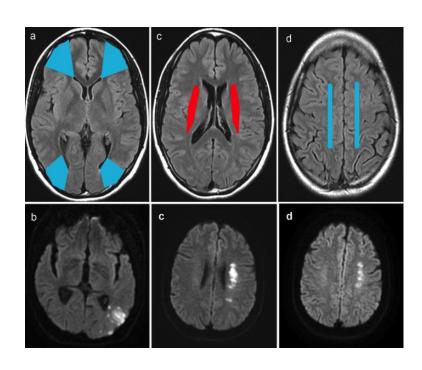
Courtesy: Dr. Ballios, retinal specialist, UHN

Hypoperfusion symptoms & Stroke risk

- Hypoperfusion symptoms alone are not strongly correlated with recurrent stroke risk
- Patients need imaging to assess their hemodynamic status

Amin-Hanjani, VERiTAS study group 2020; Lutsep, SAMMPRIS study group 2015; Mazighi Neurology 2006

Imaging hemodynamic status


Structural imaging: MRI

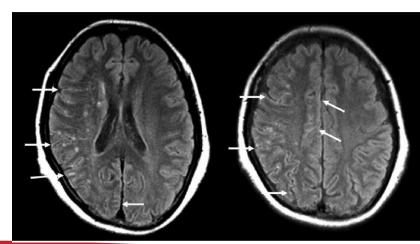
Indirect signs of hemodynamic compromise:

Infarcts in the watershed territories

Note:

- infarct patterns do not always explain the stroke mechanism
- △ territories in MMA

Case courtesy of Frank Gaillard, Mori AJNR 2009


Imaging hemodynamic status

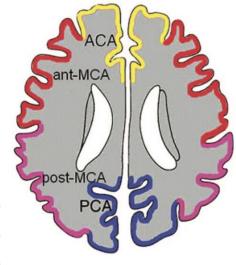
Structural imaging: MRI

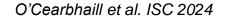
Indirect signs of hemodynamic compromise:

- Infarcts in the watershed territories
- Cortical thinning
- Ivy sign (slow flow in leptomeningeal collaterals)

Case courtesy of Frank Gaillard, Mori AJNR 2009

Diagnostic value of ivy sign


- n=73 patients, 584 cortical regions
- Index: Ivy sign on FLAIR
- Reference: BOLD cerebrovascular reactivity
- Positive predictive value for impaired CVR:
- Negative predictive value for impaired CVR:
- Sensitivity to detect impaired CVR:
- Specificity to detect impaired CVR:


79% (95%CI: 69-87)

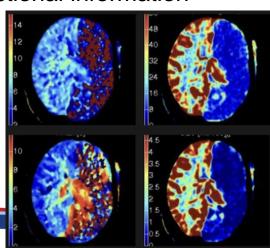
77% (95%CI: 74-79)


44% (95%CI: 35-54)

94% (95%CI: 90-97%)

Multiphase CTA

Imaging the presence of collaterals, their caliber, and impression of filling time

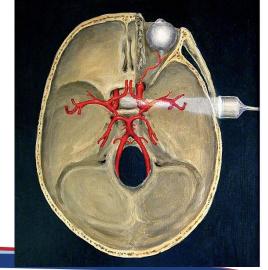

DSA

- Time-resolved imaging of collaterals
 - Note: Poor inter and intra observer agreement of collateral grading*
- Neovascularization

Imaging hemodynamics: perfusion Networks

CTP/MRP:

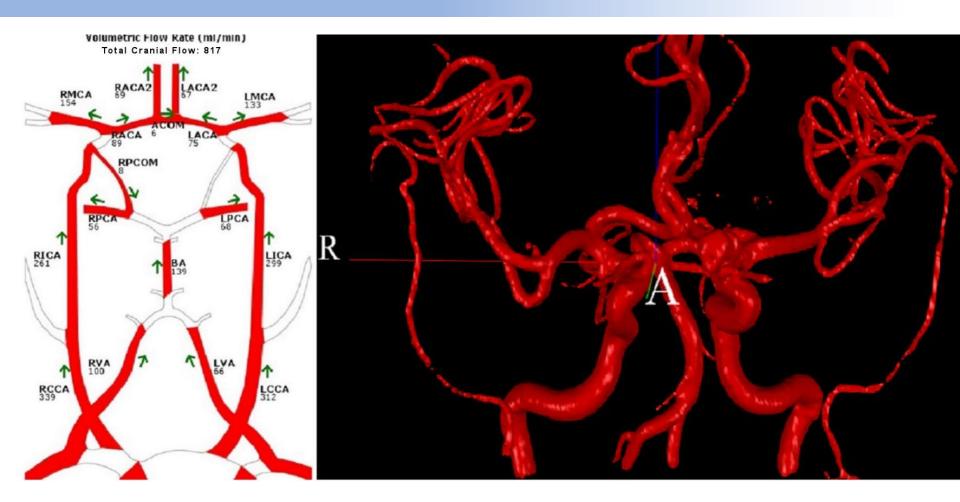
- Maps of CBF, CBV, MTT, time to maximal contrast concentration
- Limited value to assess hemodynamic impairment:
 - Resting perfusion measures
 - No assessment of the quality of the collateral circulation
 - Limited spatial resolution and skull base artifact for posterior circulation
- Less reliable with increasing severity of disease: no functional information



Imaging hemodynamics: flow

Transcranial Duplex Sonography

- Flow velocity
- Recruitment collaterals
 - Direct: ACOM/PCOM
 - Indirect: flow direction ophthalmic artery, leptomeningeal arteries
 - Increased flow in P2 ipsilateral to ICAO is related to hemodynamic impairment and stroke risk¹
- Hemodynamic impairment
 - Response to vasodilator (e.g. Diamox)
- Pros: accessibility (bedside)


Imaging hemodynamics: flow

Quantitative MRA (e.g. 'NOVA'):

- 2D Phase contrast MRA: direct volumetric flow measurements
- 3D TOF-MRA for anatomical correlation selection of orthogonal plane of interest
- Clinical utility for posterior circulation assessed in the VERiTAS study:
 - Flow measurements distal to symptomatic vertebrobasilar stenoocclusion
 - Low distal flow: 28% recurrent stroke vs 9% in normal distal flow (HR 12; 95%CI: 2-71)

Li, Charbel, et al. J Neurol Res 2021

¹⁵O-water PET

- First imaging technique to assess brain perfusion (1980's)
- ICAO patients with ongoing TIAs:
 - Misery perfusion:↓ CBF, ↑ CBV, ↑ oxygen extraction, normal O2 consumption
- Hemodynamic reserve (vasodilatory capacity) assessed with acetazolamide

Alternative: MRI BOLD with cerebrovascular reactivity (CVR)

- "Brain stress test"
- Vasodilatory stimulus: CO2
- Indirect measure for △CBF:
 - △deoxyHb -> △BOLD signal -> mapped per mmHg CO2 change
- Assesses efficacy of collaterals: cerebrovascular reserve capacity

PET: Baron et al Stroke 1981. ASL: Bokkers et al Radiology 2010. MRI BOLD Fierstra, Mikulis, Fisher et al. J Physiol 2013

Cerebrovascular reactivity MRI: emerging technique

Dr. D.J. Mikulis Neuroradiologist

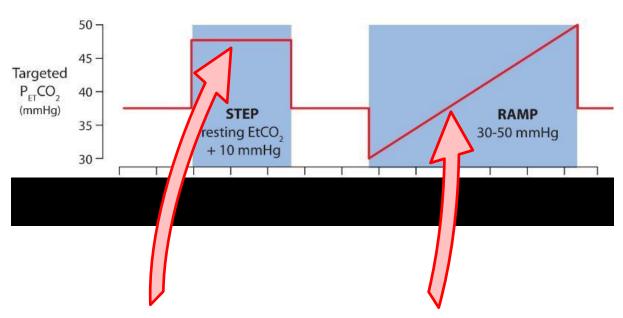
Dr. J Fisher Anesthesiologist

Bhogal Dlamini

Chin

MRI with CVR

Vaso active stimulus (CO2) using Respiract


 Full brain mapping of cerebrovascular responses to precise session-to-session vasoactive stimuli during MRI

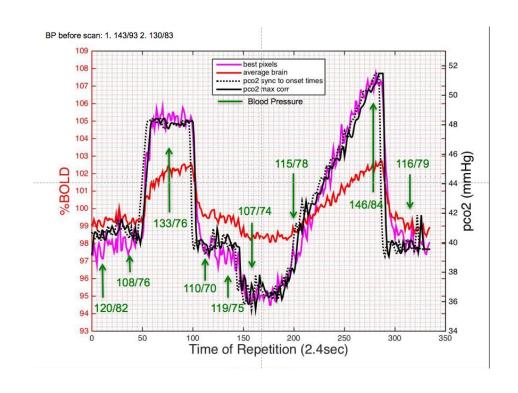
End-tidal CO2 = arterial CO2

"Step" and "Ramp" standard CO2 Stimulus

Step stimulus : CVR Speed of response response

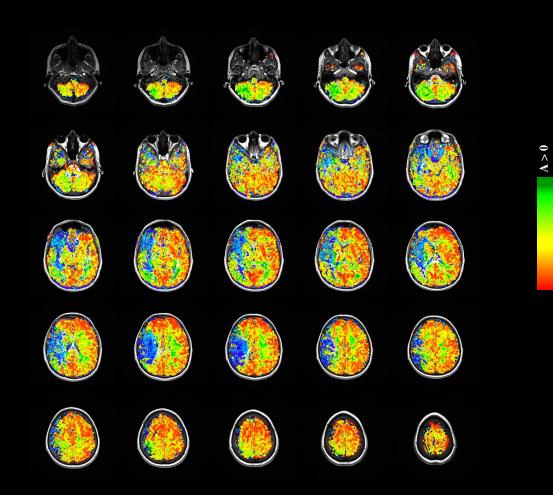
Ramp stimulus: CVR Magnitude of

Poublanc J, Mikulis DJ, Fisher JA, et al. J Cereb Blood Flow Metab. 2015

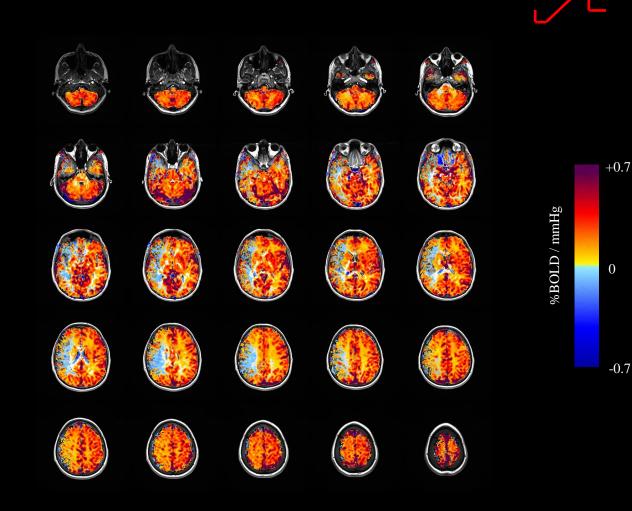

CVR response

Linear correlation between: the % change in the BOLD signal per mmHg change in CO2

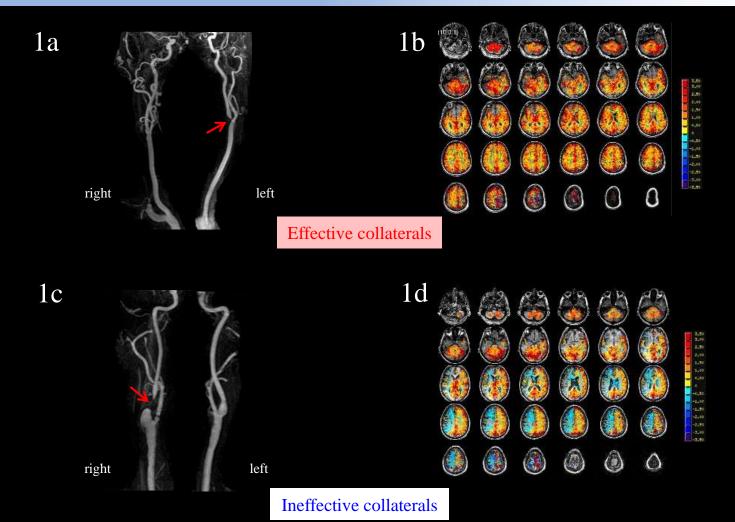
for each voxel in the brain


for every BOLD image

CVR Speed - step



100



CVR Magnitude - Ramp

CVR patterns: 2 patients with TIAs

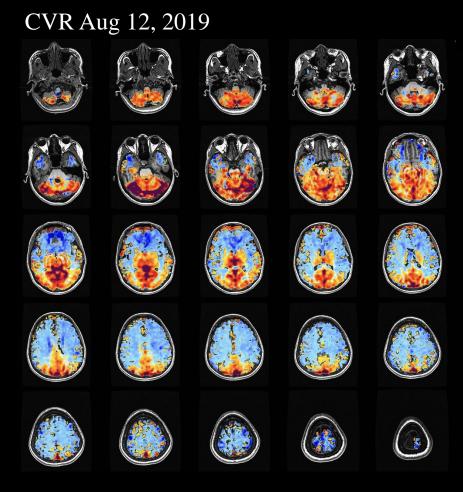
Toronto Stroke

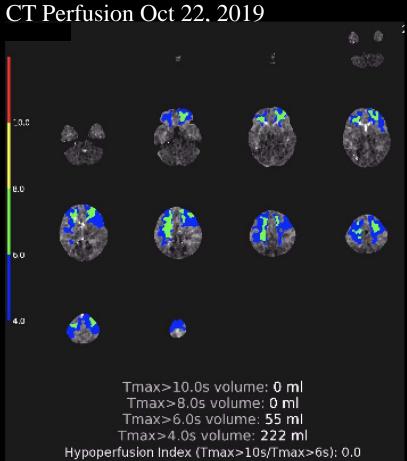
Networks

Clinical use of MRI BOLD CVR

- Reproducible
- RespirAct Health Canada approval (Aug 2022)
- Gradual integration into clinical practice

Diagnostic yield:


- BOLD-CVR vs [¹⁵O]H₂O-PET (gold standard): Good agreement
- BOLD-CVR impairment is associated with recurrent ischemic stroke
- ?Future: acute stroke failed EVT


Back to our patient: 34F L MCA symptoms & limbshaking

MRI with Cerebrovascular Reactivity Networks

Recommendations for Imaging Work-up MMA Networks

Moyamoya arteriopathy ESO Expert consensus (absence of evidence):

- Hemodynamic assessment is recommended to support decision-making:
 - In both asymptomatic and symptomatic MMA patients, to identify the territories at risk for stroke
- Use the imaging modality that the individual institution has the most experience with
- Include PCA/posterior circulation assessment in all (especially pediatric)
 MMA patients

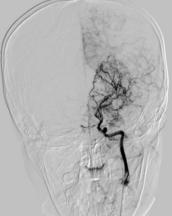
Bersano et al ESO Guidelines MMA 2023

- Medical management: all patients
 - Optimizing perfusion

- Surgical revascularization: selected patients
 - Flow augmentation (Indirect or direct methods)

No endovascular treatment with stent or angioplasty (unless ruptured moyamoya aneurysms)

Japanese guidelines for the Management of Moyamoya disease. 2021 Miyamoto S. Japan Adult Moyamoya trial. Stroke. 2014 Esposito G. Cerebral Bypass surgery level of evidence. 2018


Medical management Moyamoya angiopathy Networks

- Ischemic stroke prevention:
 - Optimize hemodynamics, avoiding triggers: dehydration, hyperventilation, fever, hypotension, regular sleep
 - Treat anemia
 - Hydroxyurea in sickle cell disease patients
 - Headache treatment:
 - Hydration, sleep
 - Avoid vasoactive agents (beta-blockers, calcium channel blockers, triptans)
 - Fludrocortisone? Midodrine?
 - Antiplatelet therapy?
 - Secondary prevention: Low-dose aspirin or clopidogrel (decreased embolic washout)
- Secondary hemorrhagic stroke prevention:
 - Avoid hypertension + hypotension
 - No aspirin if no ischemic event

Japanese guidelines for the Management of MMD. 2021 Miyamoto S. Japan Adult Moyamoya trial. Stroke. 2014 Esposito G. 2018 ESOC guidelines 2023

Surgical Revascularization MMA

Hemorrhagic Moyamoya disease

- 1 RCT (JAM trial): STA-MCA bypass
- Decreased risk of events: 34->14% over 4 yrs (Level of evidence IB)

Ischemic Moyamoya disease

- No randomized data
- Trend event ↓: RR 0.54 (95%CI:0.28-1.01)
- Natural course: 10-80% recurrent stroke over 5 years.
- Selected patients with hemodynamic impairment (BOLD CVR; PET; CBF-SPECT)

Japanese guidelines for the Management of Moyamoya disease. 2021 Miyamoto S. Japan Adult Moyamoya trial. Stroke. 2014 ESOC guidelines 2023

Surgery in Moyamoya: Toronto Stroke ESO Guidelines - AHA/ASA Statement Networks

- Adults with hemorrhagic presentation: direct STA-MCA bypass. Quality evidence: low
- Expert opinion: Consider surgery in case of:
 - Clinical ischemic presentation and imaging markers of hemodynamic impairment
 - Silent infarcts and hemodynamic impairment in the same region
 - 6-12 weeks post-event

Gonzalez et al. AHA/ASA Scientific Statement 2023; Bersano et al. ESO Guidelines 2023

Surgical Revascularization

Direct bypass

Indirect methods

OA-PCA STA-ACA-MCA

STA-MCA OA-MCA

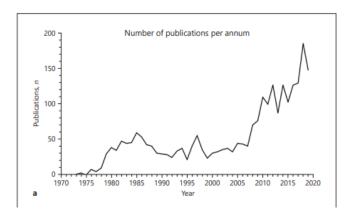
Combination

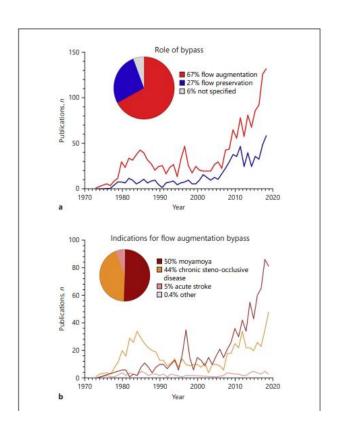
- Encephalo-myo-synangiosis (EMS)
- Encephalo-duro-arterio-synangiosis (EDAS)
 - Encephalo-duro-arterio-myosynangiosis (EDAMS)
 - Omental-cerebral transposition
 - Burr holes

Complications

- Ensure per operative normotension, normocapnia, normovolemia
- Risk of postoperative stroke (surgical site)
 - Adults (7%)
 - Pediatric (2%)
- Hyperperfusion syndrome (3-5%)
- Wound healing problems (Depends on surgical strategy)
 - 1.7 5.1% Direct bypass
 - 4.4 14% Combined treatment

Cerebrovascular Diseases


Stroke Spectrum

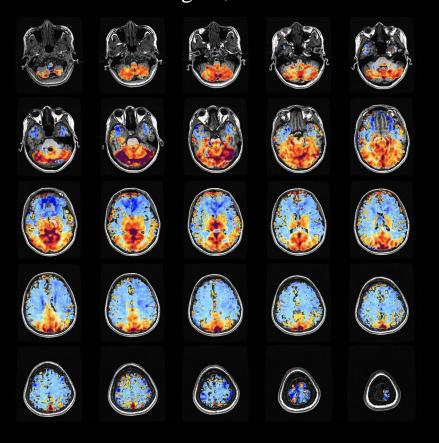

Cerebrovasc Dis DOI: 10.1159/000517415 Received: February 12, 2021 Accepted: May 14, 2021 Published online: July 21, 2021

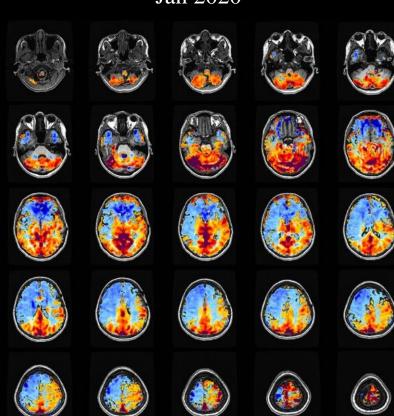
Trends in Literature on Cerebral Bypass Surgery: A Systematic Review

Basil E. Grüter^{a, b} Lazar Tosic^{a, b} Stefanos Voglis^{a, b} Flavio Vasella^{a, b} Valentino Mutschler^b Oliver Bichsel^{a, b} Natalie Scherrer^{b, c} Luca Regli^{a, b} Giuseppe Esposito^{a, b}

*Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland; bClinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland; "Neurointensive Care Unit, University Hospital Zurich, Zurich, Switzerland

Back to our patient



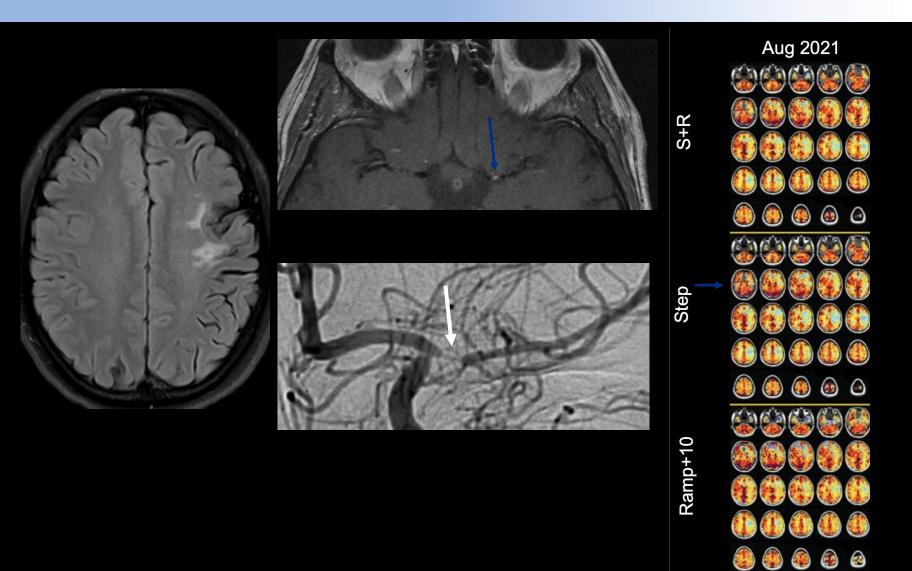

- Underwent left-sided EC-IC bypass surgery in 2020
- Uncomplicated course
- Significant improvement in her headaches
- No episodes of left MCA symptoms anymore
- Left-sided CVR improvement post-bypass:

CVR pre left ECIC by-pass Aug 12, 2019

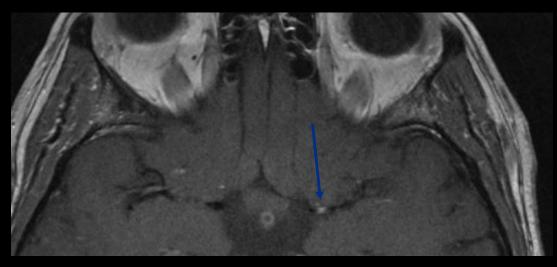
CVR post left ECIC By-pass Jan 2020

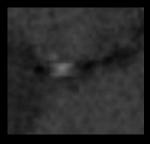
Follow-up

- Developed ischemic events from right hemisphere
- Worsening of occlusive disease and CVR on the right
- She was offered a second EC-IC bypass, now on the right in 2021 (1 year later)
- No complications
- No recurrent ischemic events. Headaches continued to improve


Workup & treatment øMMA occlusive disease

35-year-old woman

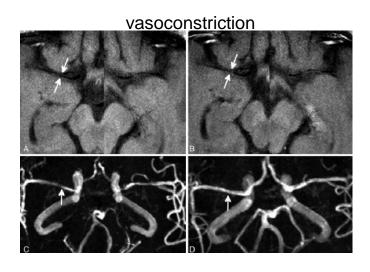

- 2021: Recurrent symptomatic left MCA stenosis: embolic stroke and TIAs
- No hemodynamic trigger
- Left-sided headache, 'brain fog'
- The nature of the stenosis is not well understood
 - Vasculitis work-up was negative (including LP)
 - New diagnosis of DM2, DLD, HTN.
 - Working diagnosis: ICAD

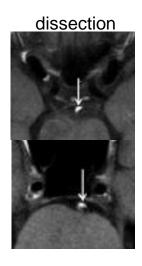

MRI Vessel wall imaging

 Circumferential eccentric enhancement -> ICAD

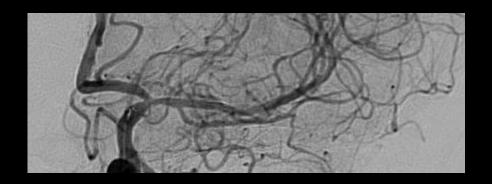
SAGITTAL

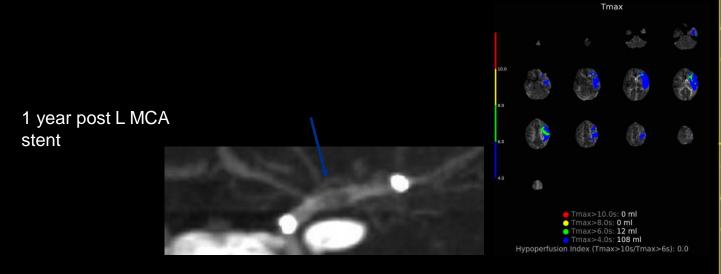
AXIAL

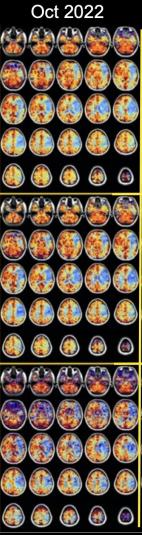

CORONAL


Yield of Vessel Wall Imaging in Stroke Networks

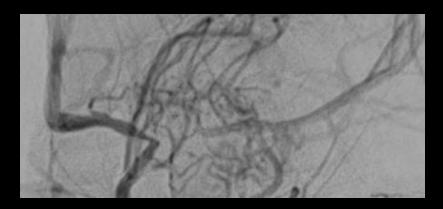
- Framework VWI interpretation
 - Atherosclerosis: eccentric thickening +/- eccentric enhancement
 - Vasculitis: circumferential concentric thickening +/- enhancement
 - Vasoconstriction: concentric thickening +/- mild enhancement
 - Dissection: eccentric thickening with homogenous eccentric enhancement

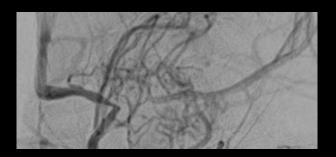

plaque

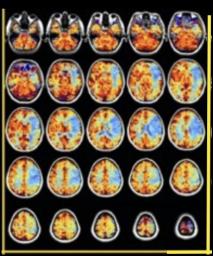


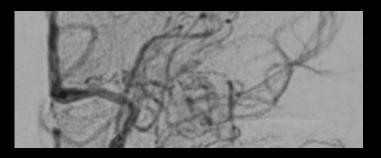


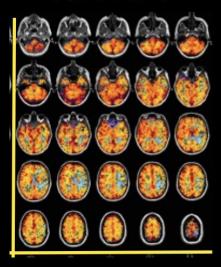
L MCA stent

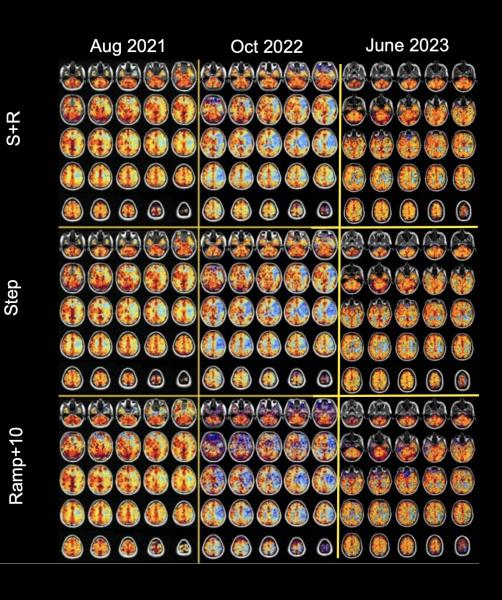



A1 patent


1 year later: Stent occluded New L A1 stenosis


Pre angioplasty LA1


Oct 2022



Post angioplasty LA1

June 2023

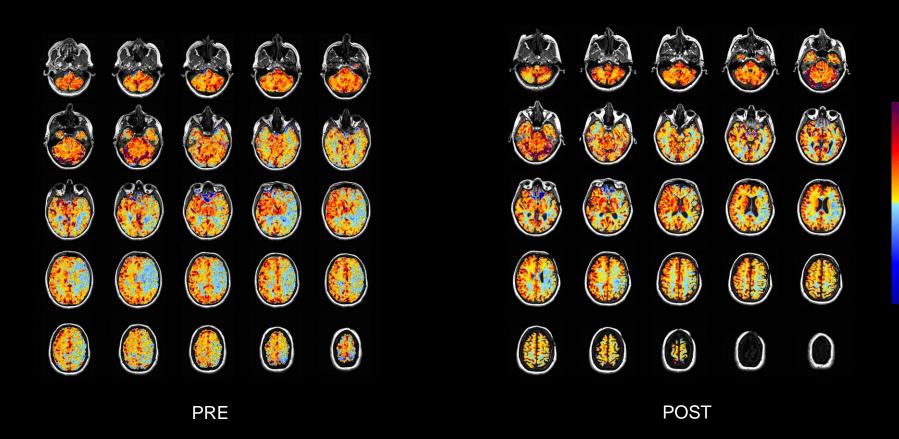
2021: Baseline

2022: 1-yr post-stenting

2023: Post angioplasty A1

Temporary clinical improvement after each procedure

Course over time


- Temporary clinical improvement after each endovascular flow augmentation treatment
- But recurrent hemodynamic symptoms, headache, and 'brain fog'.
- BOLD CVR:
 - Worsening cerebrovascular reserve
- Offered EC-IC bypass surgery

Peri/post surgery

- ECA was occluded:
 - Radial graft for cervical ICA to M2 high-flow bypass
- Target SBP 90-110 mm Hg
- No complications
- Improvement of symptoms
- Gradual reduction in caliber of the graft on follow-up but remains patent
- Improvement of BOLD CVR:

CVR Step+Ramp Pre & 3-month Post EC-IC bypass

Extracranial

- Symptomatic ICA stenosis 70-99%:
 - Revascularization with CEA/CAS, irrespective of stroke mechanism
- Symptomatic vertebrobasilar artery stenosis:
 - Medical management: antiplatelets + risk factors (VIST, VAST, SAMMPRIS, VISSIT, CAVATAS)
 - VERiTAS: hemodynamic impairment: higher stroke risk -> subtotal angioplasty?
- Symptomatic ICAO with hemodynamic impairment on imaging:
 - Medical management: antiplatelets, risk factors, optimize perfusion
 - COSS trial (¹⁵O-PET): no benefit of EC-IC bypass over medical treatment alone

Management øMMA steno-occlusive disease

Intracranial

- Regardless of the stroke mechanism:
 - Aggressive medical management (DAPT 90 days, risk factors)
 - SAMMPRIS/WEAVE/WOVEN/CASSISS/WICAD: medical management > intracranial stenting
 - No selection based on hemodynamic compromise
- Expert consensus:
 - Consider angioplasty +/- stenting >7 days post-event as rescue therapy in >70% symptomatic stenosis after failed medical management, especially if hemodynamic impairment

Symptomatic ICA or MCA occlusion

- CMOSS: patient selection based on hypoperfusion on CTP: MTT >4 s, CBF < 0.95:
 - 30-day stroke/death: 6.2% after EC-IC bypass, 1.8% with MM
 - >30-day to 2-year ipsilateral stroke: 2.0% after EC-IC bypass, 10.3% with MM
 - At 7 years: 11% after bypass, 20% with MM (RR 0.57; 95%CI: 0.33-0.97)
 - Age <56: improved outcomes

Future

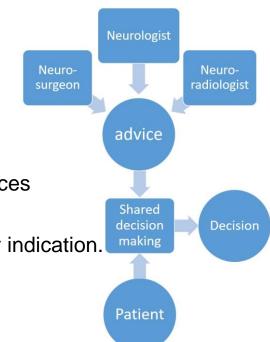
- Efficacy of revascularization procedures for selected patients based on hemodynamic impairment needs to be assessed and quantified because of the high stroke risk despite medical management
- E.g. in a combined diagnostic-therapeutic trial
 - Optimal imaging technique -> optimal patient selection
 - Reduction of revascularization (peri-)procedural risks
 - Longer follow up

Decision-making when there is limited evidence

Multidisciplinary setting:

- Cerebrovascular Neurosurgery
- Vascular Neurology
- Diagnostic Neuroradiology
- Interventional Neuroradiology
- Neuropsychology

Chronic steno-occlusive disease


Predominantly:

- Moyamoya arteriopathy
- Atherosclerotic steno-occlusive disease

Clinic visits

- Interdisciplinary pre-discussion
- Comprehensive clinic visits by relevant specialists
- Integration of guidelines, expert consensus, patient preferences
- Standard imaging: arterial wall imaging, BOLD CVR. DSA by indication.
- Neuropsychology assessment pre and post surgery
- Patient satisfaction¹:
 - 247 visits over 15 months
 - Response rate 92%
 - 98.5% (very) satisfied: provided information, patient communication
 - 72% preferred a multidisciplinary over a single-physician visit

Summary

- Hemodynamic stroke is challenging
- Recognize and ask for hemodynamic signs and symptoms: high stroke risk
- Identify the underlying pathology, e.g. with vessel wall imaging
- Assess the cerebrovascular reserve to identify high-stroke risk, e.g. with BOLD CVR
- Main treatment remains medical management
 - Avoid triggers, hydration, blood pressure, anemia
 - Atherosclerosis: CV risk factors, antiplatelets to prevent progression
- Revascularization interventions: open surgery or endovascular
 - Currently in highly selected patients
 - Multidisciplinary approach
 - Need a better understanding of their long-term efficacy and periprocedural risks
 - Future: optimal selection of patients who benefit

Acknowledgement

- Ivan Radovanovic, cerebrovascular neurosurgeon
- Hugo Andrade, cerebrovascular neurosurgeon
- David Mikulis, neuroradiologist
- Andrea Para, neuroradiologist
- Federico Carpani, stroke neurologist
- Melanie Cohn, clinical neuropsychologist
- Lashmi Venkatraghavan, neuro-anesthesiologist
- Helena Janssen, stroke neurologist & PhD student
- Roisin O'Cearbhill, neuroradiology fellow
- Daniela Gallego Moyano, med student
- Noa Chazot, research student
- The INR team, Stroke Neurology Team,
 Diagnostic Neuroradiology Team

Evaluation

For the **Provincial Stroke Rounds Planning Committee**:

- To plan future programs
- For quality assurance and improvement
- For You: Reflecting on what you've learned and how you plan to apply it can help you enact change as you return to your professional duties
- For Speakers: The responses help understand participant learning needs, teaching outcomes and opportunities for improvement.

https://forms.office.com/r/qDuedTfj3j

Please take 2 minutes to fill the evaluation form out. Thank you!